If you’re planning to take the SY0-501 version of the Security+ exam, you should understand the different types of malware such as Trojans. A Trojan appears to be one thing, such as pirated software or free antivirus software, but is something malicious.
For example, can you answer this question?
Q. A recent antivirus scan on a server detected a Trojan. A technician removed the Trojan, but a security administrator expressed concern that unauthorized personnel might be able to access data on the server. The security administrator decided to check the server further. Of the following choices, what is the administrator MOST likely looking for on this server?
A. Backdoor
B. Logic bomb
C. Rootkit
D. Botnet
More, do you know why the correct answer is correct and the incorrect answers are incorrect? The answer and explanation are available at the end of this post.
Trojans
A Trojan, also called a Trojan horse, looks like something beneficial, but it’s actually something malicious. Trojan horses are named after the infamous horse from the Trojan War. In Greek mythology, the Achaeans tried to sack the city of Troy for several years, but they simply couldn’t penetrate the city’s defenses. At some point, someone got the idea of building a huge wooden horse and convincing the people of Troy that it was a gift from the gods. Warriors hid inside, and the horse was rolled up to the gates.
The people of Troy partied all day and all night celebrating their good fortune, but when the city slept, the warriors climbed down from inside the horse and opened the gates. The rest of the warriors flooded in. What the Greek warriors couldn’t do for years, the Trojan horse helped them do in a single day.
In computers, a Trojan horse can come as pirated software, a useful utility, a game, or something else that users might be enticed to download and try. Attackers are increasingly using drive-by downloads to deliver Trojans. In a drive-by download, web servers include malicious code that attempts to download and install itself on user computers after the user visits.
Here are the typical steps involved in a drive-by download:
1. Attackers compromise a web site to gain control of it.
2. Attackers install a Trojan embedded in the web site’s code.
3. Attackers attempt to trick users into visiting the site. Sometimes, they simply send the link to thousands of users via email hoping that some of them click the link.
4. When users visit, the web site attempts to download the Trojan onto the users’ systems.
Another Trojan method that has become popular in recent years is rogueware, also known as scareware. Rogueware masquerades as a free antivirus program. When a user visits a site, a message on the web page or a pop-up appears indicating it detected malware on the user’s system. The user is encouraged to download and install free antivirus software.
On the surface, this free antivirus software looks useful. However, it isn’t. If a user installs and runs it on a system, it appears to do a system scan. After the scan completes, it reports finding multiple issues, such as infections by dozens of viruses. The report isn’t true. The application reports these issues even on a freshly installed operating system with zero infections.
It then encourages the user to resolve these issues immediately. If the user tries to resolve the issues, the program informs the user that this is only the trial version, and the trial version won’t resolve these issues. However, for the small fee of $79.95, users can unlock the full version to remove the threats. Some rogueware installs additional malicious components. For example, it might allow the attacker to take remote control of the infected system.
Many web browser extensions include malicious Trojans. As an example, I once added an extension into my Google Chrome browser so that I could download videos and view them offline. Unfortunately, it modified the browser’s behavior. When I went to a page from a Google search and then right-clicked on the page, it took to me to a malicious web site encouraging me to install malware disguised as a Windows Repair tool. At one point after right-clicking, it indicated my Chrome browser was out of date and encouraged me to download and install an update. However, using Chrome’s tools, I verified that Chrome was up to date. When I clicked on Extensions to remove it, it redirected me to a malicious web site. I ultimately reset Chrome to the default settings, disabling all the extensions, and deleted the malicious extension.
Backdoors
A backdoor provides another way of accessing a system, similar to how a backdoor in a house provides another method of entry. Malware often installs backdoors on systems to bypass normal authentication methods.
While application developers often code backdoors into applications, this practice is not recommended. For example, an application developer might create a backdoor within an application intended for maintenance purposes. However, if attackers discover the backdoor, they can use it to access the application.
Effective account management policies help prevent ex-employees from creating backdoors after they are fired. For example, if an employee loses network access immediately after being fired, the employee cannot create a backdoor account. In contrast, if an administrator retains network access, he might create another administrative account. IT personnel might disable his account after they learn he has been fired, but he can still use this new backdoor account. That’s exactly what a Fannie Mae Unix engineer did after being told he was fired.
Fannie Mae’s account management policy did not revoke his elevated system privileges right away, giving him time to create a backdoor account. After going home, he accessed the system remotely and installed a logic bomb script scheduled to run at 9:00 a.m. on January 31. If another administrator hadn’t discovered the logic bomb, it would have deleted data and backups for about four thousand servers, changed their passwords, and shut them down.
Q. A recent antivirus scan on a server detected a Trojan. A technician removed the Trojan, but a security administrator expressed concern that unauthorized personnel might be able to access data on the server. The security administrator decided to check the server further. Of the following choices, what is the administrator MOST likely looking for on this server?
A. Backdoor
B. Logic bomb
C. Rootkit
D. Botnet
Answer is A. The security administrator is most likely looking for a backdoor because Trojans commonly create backdoors, and a backdoor allows unauthorized personnel to access data on the system.
Logic bombs and rootkits can create backdoor accounts, but Trojans don’t create logic bombs and would rarely install a rootkit.
The computer might be joined to a botnet, but a botnet is a group of computers.